3.404 \(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=118 \[ \frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 (3 B-2 C) \sin (c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}+\frac {2 C \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 a d} \]

[Out]

(A-B+C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2/3*(3*B-2*C)*sin(d*x
+c)/d/(a+a*cos(d*x+c))^(1/2)+2/3*C*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 118, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3023, 2751, 2649, 206} \[ \frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 (3 B-2 C) \sin (c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}+\frac {2 C \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Sqrt[2]*(A - B + C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) + (2*(3*B
 - 2*C)*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]]) + (2*C*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*a*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {2 \int \frac {\frac {1}{2} a (3 A+C)+\frac {1}{2} a (3 B-2 C) \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{3 a}\\ &=\frac {2 (3 B-2 C) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 a d}+(A-B+C) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {2 (3 B-2 C) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {(2 (A-B+C)) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {2} (A-B+C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 (3 B-2 C) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 C \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.14, size = 79, normalized size = 0.67 \[ \frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (3 (A-B+C) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+6 B \sin \left (\frac {1}{2} (c+d x)\right )-4 C \sin ^3\left (\frac {1}{2} (c+d x)\right )\right )}{3 d \sqrt {a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*Cos[(c + d*x)/2]*(3*(A - B + C)*ArcTanh[Sin[(c + d*x)/2]] + 6*B*Sin[(c + d*x)/2] - 4*C*Sin[(c + d*x)/2]^3))
/(3*d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 151, normalized size = 1.28 \[ \frac {4 \, {\left (C \cos \left (d x + c\right ) + 3 \, B - C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right ) + \frac {3 \, \sqrt {2} {\left ({\left (A - B + C\right )} a \cos \left (d x + c\right ) + {\left (A - B + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/6*(4*(C*cos(d*x + c) + 3*B - C)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c) + 3*sqrt(2)*((A - B + C)*a*cos(d*x + c
) + (A - B + C)*a)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x
+ c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

giac [A]  time = 1.19, size = 114, normalized size = 0.97 \[ -\frac {\frac {3 \, \sqrt {2} {\left (A - B + C\right )} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}} - \frac {2 \, {\left (\sqrt {2} {\left (3 \, B a - 2 \, C a\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 3 \, \sqrt {2} B a\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}}}}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/3*(3*sqrt(2)*(A - B + C)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)))/sqrt(
a) - 2*(sqrt(2)*(3*B*a - 2*C*a)*tan(1/2*d*x + 1/2*c)^2 + 3*sqrt(2)*B*a)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x +
1/2*c)^2 + a)^(3/2))/d

________________________________________________________________________________________

maple [B]  time = 1.16, size = 233, normalized size = 1.97 \[ \frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-4 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) C +3 A \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a -3 B \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a +6 B \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+3 \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a C \right )}{3 a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x)

[Out]

1/3*cos(1/2*d*x+1/2*c)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1
/2*d*x+1/2*c)^2*C+3*A*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a-3*B*ln(4/cos(1/2*d
*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a+6*B*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+3*ln(4/cos(
1/2*d*x+1/2*c)*(a^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a))*a*C)/a^(3/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*
c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [B]  time = 1.43, size = 206, normalized size = 1.75 \[ \frac {2\,B\,\left (2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )-\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )\right )\,\sqrt {\frac {a+a\,\cos \left (c+d\,x\right )}{2\,a}}}{d\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}+\frac {A\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )\,\sqrt {\frac {2\,\left (a+a\,\cos \left (c+d\,x\right )\right )}{a}}}{d\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}+\frac {2\,C\,\sin \left (c+d\,x\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{3\,a\,d}-\frac {2\,C\,\left (4\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )-3\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |1\right )\right )\,\sqrt {\frac {a+a\,\cos \left (c+d\,x\right )}{2\,a}}}{3\,a^2\,d\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(a + a*cos(c + d*x))^(1/2),x)

[Out]

(2*B*(2*ellipticE(c/2 + (d*x)/2, 1) - ellipticF(c/2 + (d*x)/2, 1))*((a + a*cos(c + d*x))/(2*a))^(1/2))/(d*(a +
 a*cos(c + d*x))^(1/2)) + (A*ellipticF(c/2 + (d*x)/2, 1)*((2*(a + a*cos(c + d*x)))/a)^(1/2))/(d*(a + a*cos(c +
 d*x))^(1/2)) + (2*C*sin(c + d*x)*(a + a*cos(c + d*x))^(1/2))/(3*a*d) - (2*C*(4*a^2*ellipticE(c/2 + (d*x)/2, 1
) - 3*a^2*ellipticF(c/2 + (d*x)/2, 1))*((a + a*cos(c + d*x))/(2*a))^(1/2))/(3*a^2*d*(a + a*cos(c + d*x))^(1/2)
)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________